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The aim of this research work was to study the microstructure of porous CP Ti with dextrin addition obtained by Powder 
Metallurgy, aimed for endosseous implants. Powder mixtures of CP Ti with 35 vol.% dextrin with different particle sizes 
were pressed with 400 MPa and sintered in two different conditions. The sintering behavior and microstructures were 
investigated by means of differential thermal calorimetry, optical microscopy and scanning electron microscopy. The results 
are helpful for the optimization of the processing cycle of Ti - dextrin powder mixtures.  
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1. Introduction 
 
Ti and Ti alloys are widely employed in the medical 

field due to their excellent combination of good 
mechanical properties, good corrosion resistance, low 
density, biocompatibility [1, 2].  

Porous structures gained an increased interest for 
endosseous applications as a consequence of their lower 
elastic modulus as compared to that of the compact 
material and therefore lower tendency to the stress-
shielding phenomenon. Besides bulk structure, surface 
morphology and composition play an important role in the 
osseointegration process. A porous surface enhances the 
mechanical anchorage of the future implant with the 
surrounding hard tissue by the formation of the new bone 
in the surface pores [3]. To this aim, it was reported that 
the optimum pores size should be between 100 µm and 
200 µm [4]. The chemical composition of the surface is 
also important since it strongly affects the bonding  
between the implant and the host hard tissue.  

Different technologies may be employed to obtain 
porous structures, as conventional Powder Metallurgy 
(PM), Rapid Prototyping (RP) and others. 

In PM practice, porogen agents or space holders are 
often used to obtain porous compacts with a designed 
porosity [4, 5].  However, it should be kept in mind that if 
porosity is beneficial for the osseointegration, it negatively 
affects the mechanical properties of the biomaterial. In 
consequence, a compromise ought to be found for each 
particular application. A possible solution could be the 
employment of porous compacts with a gradual porosity, 
which meets the requirements of the biomaterial both in 
term of osseointegration and strength [6, 7].  

In our previous research, porous compacts of CP Ti 
were obtained by PM (pressing and sintering), using 
dextrin ((C6H10O5)n) as porogen agent. Dextrin is an 
organic compound derived from starch. It may be easy 

removed from the bulk material by solving it in water. The 
amount of dextrin and some of the processing parameters 
were optimized based on the microstructural 
characterization and mechanical behavior of the sintered 
compacts. It was found that an amount of 35 vol.% dextrin 
admixed to the base Ti powder, uniaxially pressed with 
400 MPa and sintered at 1100ºC for 1 h in vacuum of 10-4 
– 10-5 torr, resulted in satisfactory properties of the 
sintered compacts. No lubricant was used in order to avoid 
an eventual contamination of the samples, which might 
negatively affect the material biocompatibility. After 
pressing the powder mixtures, an additional operation 
ought to be introduced in the processing cycle aimed to 
remove the most part of the dextrin from the green 
compacts. It consisted in stirring the greens in water at a 
temperature of approximately 80ºC for 15 min., followed 
by drying in a heat chamber at 90ºC for 30 min. The as-
prepared specimens were sintered at 1100ºC for 1 h in 
vacuum, with a heating rate of about 10ºC/min. During the 
heating step, an impairment of the vacuum level was 
noticed at a temperature between 350ºC and 400ºC. The 
as-sintered and surface conditioned specimens were tested 
both “in vitro” and “in vivo” [8].  

The purpose of the present study was to get a deep 
understanding of the microstructure of PM Ti compacts 
with dextrin addition, for a further optimization of their 
processing. The results would further allow an accurate 
characterization of as-sintered specimens in terms of 
biocompatibility.  

 
 
2. Experimental  
 
The CP Ti powder (with a purity higher than 99.5%) 

obtained by hydration-milling-dehydration process with 
powder particles size lower than 45 µm was used as base 
material to produce cylindrical specimens with 10 mm 
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diameter and about 4 mm height, as indicated in Fig.1. The 
used Ti powder contained same TiH2 as detected by XRD 
analysis, resulted from the obtaining process [8]. 
 

 
Fig. 1. Design of the studied specimens 

 
 

 For the substrate only Ti powder was used. The 
porous layer was made of mixtures of Ti with 35 vol.% 
dextrin with different particle size, as follows: < 100 µm, 
between 100 µm and 160 µm, > 160 µm. The powders 
were pressed at a same time in a closed die with 400 MPa. 
The most part of dextrin was removed from the greens by 
stirring them in water at about 80°C for 15 min. The 
pressed compacts were subsequently dried in a heating 
chamber at 90°C for 30 min. Sintering was carried out in 
two different conditions: 

- cycle A: at 1200°C for 1h, in vacuum of 10-5 torr, 
heating rate of 5°C/min., with a soaking stage at 450°C for 
2 h, in a lab furnace; 

- cycle B: at 1300°C for 1h, heating rate of 5°C/min., 
in vacuum of 10-5 torr up to 500°C then in Ar, with two 
soaking stages at 600°C and 1000°C respectively, for 20 
min. each, in an industrial furnace. 

 It should be underlined that the differences 
between the two sintering are as follows: heating profiles, 
of a primary importance in the frame of this research, and 
sintering temperature, less considered in the present study. 
Cycle A characterized by the presence of the soaking stage 
during heating should be more beneficial than cycle B 
with regard to the dextrin removal. 

 Metallographic samples were prepared as 
according to the standard procedure. Etching was carried 
out with Kroll reagent. The microstructures were analysed 
with the help of an Olympus GX51 optical microscope and 
a JEOL 5600LV scanning electron microscope, equipped 
with EDS. Ti powder and Ti - dextrin mixture were 
subjected to differential scanning calorimetry using a 
Labsys Setaram equipment. The powders were heated up 
to 1200°C with a heating rate of 10°C/min. in Ar 
atmosphere.  

 
 
3. Results and discussions 
 
3.1 Thermal analyses 
 
DSC curves of Ti and Ti-dextrin mixture are shown in 

Fig.2 and Fig.3 respectively. The first endothermic peak 
displayed by both curves at temperatures lower than 
100°C was related to the removal of moisture from the 
powders. Decomposition of dextrin is indicated by the 
endhothermic peak at a temperature between 250°C and 
260°C [9].  

The endhothermic events at about 331°C displayed by 
the DSC curves of both Ti and Ti - dextrin mixture 
correspond to the reduction of TiH2 as according to the 
reaction (1):  

 
 TiH2 = Ti + H2                                                          (1) 

 
The formation of rutile, TiO2, the stable form of Ti 

oxide at temperatures higher than 600°C [10], is evidenced 
by the presence of the peak at about 556°C in Fig. 2 and 
the peak at about 590°C in Fig.3. 
 

 
  

Fig.2. DSC curve of Ti powder 
 

 
 

Fig.3. DSC curve of Ti-dextrin powder mixture 
 
 

3.2 Microstructure 
 
The microstructures of samples prepared with dextrin 

of different particles size and sintered as according to 
cycle B, as example, are shown in Fig.4. The pores size 
increased with the mean particle size of the admixed 
dextrin powder, as expected. Irrespectively to the sintering 
conditions, macrocracks were found in the porous layer of 
specimens prepared with dextrin larger than 160 µm. 
Based on this observation, for the further experimental 
trials only dextrin with particle size lower than 150 µm 
will be employed. 
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lower amount of this C containing phase in the 
microstructure of the as-sintered materials.    

 
 
4. Conclusions 
 
Porous CP Ti structures with a designed porosity are 

possible to be obtained by a proper selection of the dextrin 
particle size; 

Dextrin powder with a mean particle size lower than 
150 µm will be used for obtaining porous structures;  

An efficient removal of dextrin could be helped by a 
proper heating ramp during sintering; a low heating rate up 
to about 400°C followed by a soaking stage at this 
temperature are recommended to this aim; 

Future research work was planned in order to assess 
the impact of the microstructural features on mechanical 
properties, wear resistance and biocompatibility. 
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